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Abstract
At the JPMorgan Chase Institute, we aim to publish generalizable insights that are representative of the overall US population. To 
do this, we require a method to reweight research based on key characteristics, with income foremost among them. Given that 
we do not have full coverage of income information across our portfolio of customers, we set out to develop a reliable method 
for estimating income.

Using machine learning techniques, we trained an estimate of gross family income based on a truth set drawn from credit card 
and mortgage application data. JPMC Institute Income Estimate (JPMC IIE) version 1.0 uses gradient boosting machines (GBM) 
and relies heavily on administrative banking data such as checking account inflows. It predicts income with a mean absolute error 
(MAE) of 41 percent, outperforming comparative benchmarks, and demonstrates consistent accuracy across predicted income 
pentiles (average 55 percent). JPMC IIE version 1.0 is currently in use for research purposes, with results similar to truth set income 
when used for reweighting purposes. Future versions will seek to improve predictive power and expand the use of the estimate.
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Introduction
The JPMorgan Chase Institute was established to leverage the power of administrative banking data to deepen our understanding of 

critical economic issues and provide timely insights to decision makers. Our data are drawn from millions of de-identified JPMorgan Chase 

accounts, enabling us to shed light on how consumers interact with their personal finances and their broader economic environments, 

without compromising our customers’ privacy (see Box 1).

As in all research, our ability to extend insights gained from the Chase portfolio to the US population relies on having or approximating 

a sample that is representative of the broader population and being able to describe how the results differ by age, income, geography, 

and other key attributes. For example, if we want to measure growth in consumer spending in Houston, as we do with our Local Consumer 

Commerce Index, we want to make sure that the customers we observe in Houston are truly representative of that city, and we might also 

want to know who within Houston is contributing most of the growth. 

Financial institutions have some but not all of the tools at their fingertips to segment and assess representativeness of customers. As a 

result of Know Your Customer Requirements stipulated by the US Patriot Act of 2001, financial institutions are required to know a person’s 

age and residence before they can open a bank account for her. These are key attributes that could be used to reweight the population to 

match the nation along those dimensions. 

When it comes to income, the task is much more difficult. Financial institutions are not required to know a customer’s income in order to 

open a checking account for her. Once that account is opened, the financial institution might infer income levels from observing the inflows 

into that account, but even still, those flows would represent take-home income and might be incomplete or difficult to interpret as true 

income. Moreover, those checking account inflows would be difficult to compare to measures of pre-tax, gross family income provided in 

public data sets. 

Meanwhile, federal credit underwriting criteria (e.g., Regulation Z §1026.51 Ability to Pay) require financial institutions to collect—and, 

in some cases, verify—information on income for the purposes of extending loans in order to ensure that customers have the ability to 

pay back the loan, estimates which might be more comparable to the public measures. In this brief we explore methodologically whether 

those sources of income information used for underwriting, stated by the customer and verified by the financial institution, can be used 

as the “ground truth” alongside vast amounts of administrative and public data to estimate gross family income for customers for whom 

such income information does not exist. Ultimately, the use case for this income estimate is to segment or reweight sample populations 

exclusively for analytical and research purposes and not for business decisions. 

This technical note describes the methodology behind version 1.0 of the JPMorgan Chase Institute Income Estimate (JPMC IIE). Version 

1.0 of the JPMC IIE is able to predict gross family income with a mean absolute error of 41 percent and assign families to the correct 

income quintile 55 percent of the time. Across all income quintiles, roughly 90 percent or more of the observations were classified in the 

correct or an adjacent income quintile. We describe efforts to overcome sparse coverage, uncertain accuracy, and systematic biases in the 

samples for whom such “ground truth” exists. We broadly outline the data sources used to generate 400 raw features and the steps taken 

to pre-process those into almost 800 candidate features used to predict income. We describe efforts to tune the model to achieve the best 

performance. And we report diagnostic tests used to assess the validity of version 1.0 of JPMC IIE to reweight our sample in our first use 

case, the JPMorgan Chase Institute Healthcare Out-of-Pocket Spending Panel. We conclude with insights from developing version 1.0 of 

JPMC IIE and ideas for further improvement. As with version 1.0, the goal of subsequent versions of JPMC IIE will remain unchanged: for 

JPMorgan Chase Institute’s use in segmenting, reweighting, and analyzing populations to deepen understanding of our research insights.

https://www.jpmorganchase.com/corporate/institute/lcc-index.htm
https://www.jpmorganchase.com/corporate/institute/lcc-index.htm
https://www.gpo.gov/fdsys/pkg/CFR-2013-title31-vol3/pdf/CFR-2013-title31-vol3-sec1020-220.pdf
https://www.consumerfinance.gov/policy-compliance/rulemaking/regulations/1026/51/
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Methods
Figure 1 illustrates process flow for developing version 1.0 

of JPMC IIE. A brief summary follows, and the remainder 

of this paper discusses details and results of each step.

At a high level, we select an income truth set by 

assembling income data from mortgage applications 

and credit card information from a base population 

of Chase checking account customers. We then gather 

the feature set from sources internal and external to 

the bank for use as model inputs. Data pre-processing 

occurs prior to model training to ensure that all features 

are appropriately structured prior to use in the model. 

The model training itself progresses in an iterative loop, 

cycling through hyperparameter tuning, model training, 

and testing. After scoring the models on the full checking 

account universe, performance on JPMCI research use 

case determines whether additional rounds of processing 

and training are needed, and the cycle begins anew.

Figure 1 - JPMC IIE development process flow

Box 1: JPMC Institute – Public Data Privacy 
Notice

The JPMorgan Chase Institute utilizes rigorous security 

protocols to ensure all customer information is kept confidential 

and secure. Our strict protocols and standards are based on 

those employed by government agencies and we work with 

technology, data privacy and security experts to maintain 

industry leading standards.

There are several key steps the Institute takes to ensure customer 

data are safe, secure, and anonymous, including:

• Removing all unique identifiable information—including 

names, account numbers, addresses, dates of birth, and 

Social Security Numbers—before the Institute receives 

the data. 

• Putting in place privacy protocols for researchers, including 

rigorous background checks and strict confidentiality 

agreements. Researchers are contractually obligated to 

use the data solely for approved research and may not 

re-identify any individual represented in the data. 

• Disallowing the publication of any information about an 

individual, consumer, or business. Any data point included 

in any publication based on the Institute’s data may only 

reflect aggregate information. 

• Storing data on secure servers and under strict security 

procedures such that data cannot be exported outside 

of JPMorgan Chase’s systems. The data are stored on 

systems that prevent them from being exported to other 

drivers or sent to outside email addresses. These systems 

comply with all JPMorgan Chase Information Technology 

Risk Management requirements for data monitoring  

and security. 

The Institute prides itself on providing valuable insights to 

policymakers, businesses, and nonprofit leaders. But these 

insights do not come at the expense of JPMorgan Chase 

customer privacy or security. 
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Data Sources

The goal of JPMC IIE is to predict gross family income of Chase checking account customers each year from 2013 to 2017. We restrict the 

prediction exercise to customer-months that have sufficient checking account activity to establish a relationship with the bank. We aggregate 

all of the data in the checking account universe to the primary account holder level. Broadly, the estimate predicts “ground truth” income 

combined from mortgage and credit card applications. Absent self-reporting errors, both sources of income reflect customers’ gross family-

level income. For customers present in the checking account universe, we obtained income information from mortgage applications and 

credit card data processed from 2013 to 2017, which we divided into separate truth sets by year. We gathered feature sets from sources both 

internal and external to the bank and aggregated the feature sets at the annual level for each calendar year.1 

Truth Set and Additional Filtering

Our initial choice for income truth set was the mortgage sourced income. As this income was verified during the mortgage application process, 

it should be highly accurate. It became apparent, however, that this truth set was highly unbalanced and biased towards high income groups. 

Specifically, when we bucketed the mortgage verified income into quintiles defined by the American Community Survey(ACS), close to 50 

percent of the sample was in quintile 5, compared to just 6 percent in quintiles 1 and 2 (Figure 2).2 This poses a challenge for generalizability 

and our ability to estimate income for and reweight checking account customers across the entire income spectrum in the US.

Unlike the mortgage sample, the checking account universe includes 

customers who have no credit products. It therefore has larger 

representation in the lower ACS income quintiles than the mortgage 

truth set. In addition, mortgage customers have different underlying 

attributes compared to checking account customers who do not 

have a mortgage, which could further exacerbate the problem. For 

example, mortgage customers tend to be older and have higher 

levels of overall indebtedness than customers who do not qualify 

for a mortgage.3 Given these concerns, we sought ways to increase 

the representativeness of our sample.

Including credit card income in the truth set was a possible solution. 

While the credit card income provided greater representation of the 

lower income groups, this source of income was customer-reported 

and not verified. Figure 3 shows that the median percentage 

difference of credit card stated income minus mortgage verified 

income was positive among customers who applied for the two 

products within the same year. In other words, customers tended 

to state more income on their credit card applications than was 

verified on their mortgage applications. 

Our final truth set includes customers for whom we have information 

on either mortgage income or credit card income. Although 

customers tend to state more income on credit card applications 

than is verified on their mortgage applications, this may represent 

income from unverifiable sources, such as cash. To avoid losing this 

information, we averaged the two sources of income when both were 

present. Finally, we log-transformed income for model training and 

assessments to address the positive skew in the distribution of truth 

set income.

Figure 2 - Mortgage verified income

Figure 3 - Stated income minus mortgage verified income

Difference (as % of stated income)

1st Quartile -10%

Median 5%

3rd Quartile 25%

Correlation 0.44

Source: JPMorgan Chase Institute
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After combining the two forms of income data, we performed three steps to improve upon the accuracy and representativeness of our final 

income truth set. To address accuracy, we first removed customers whose truth set income was less than income inflows into their checking 

account.4 We constructed a conservative view of income based on inflows by summing only the inflow transactions that we categorized 

as income. Because checking account inflows represent take-home income after taxes and other deductions and may not represent the 

customer’s overall income, we expect true income to always be greater than income inflows. We therefore removed customers from the 

sample whose truth set income was below their checking account inflows. Overall, approximately 9 percent of customers met this condition 

for sample removal. 

Second, in our remaining sample, we also removed customers whose truth set income was in the top or bottom percentile of the truth set 

in order to train the model without undue influence of extreme observations.5 

Finally, we sought to address sample representativeness, especially in the lower income quintiles. We bucketed the truth set incomes by ACS 

quintiles and created a stratified sample by randomly selecting 50,000 customers from each quintile to form our final truth set. This yielded 

a truth set of 250,000 customers each year. As shown in Figure 4, the stratified sample has better coverage across the income spectrum 

and improves representation among low-income families, relative to the un-stratified sample.

Figure 4 – Final income truth set used for model training

Feature Set and Data Treatment

The feature set used to predict income originated from sources both internal and external to the bank. Internally, we include four main groups 

of features, appended to the file of the checking account primary account holder. We aggregated account features at the annual level, capturing 

the maximum, minimum, average, range, and total of each feature within the calendar year:2

• Customer information: Age, inferred gender, ZIP code;

• Checking account attributes: We categorize checking account inflows into several income categories, such as labor income. We also 

include features that characterize the inflow channel, such as cash deposit. We include additional checking account attributes, such as 

end-of-month checking account balance;

• Credit card attributes: Number of Chase credit cards and card attributes, such as the credit limit; and

• Attributes of other accounts: Number of loans and loan terms; total liquid assets across all deposit accounts.
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Although checking account outflows and spending categories are also likely to be predictive of income, we exclude those from the feature 

set for two reasons. First, in administrative banking data, income and spending are mechanically linked, insofar as an account holder can 

generally only spend that which she has deposited into the account (without incurring overdraft fees). Second, we intend to use JPMC IIE to 

explain spending behavior in future research and cannot do so if that spending behavior is an input into JPMC IIE, as the relationship would 

become circular. 

In addition to administrative banking data features, we also gathered features from ZIP code-level characteristics available through public 

datasets, such as the Internal Revenue Service (IRS) Statistics of Income (SOI) dataset, and Zillow rental information, as well as Census data 

at the tract level. 

In total this yielded 400 raw candidate features for model training per year. We appended these 400 features to the income truth set 

contemporaneously, meaning that we assembled a feature set for each year and associated it with an income truth set of the same year. 

Pre-processing numeric features: Figure 5 illustrates the steps taken to pre-process our input data. Broadly, the steps to process numeric 

features include:

• Applying log-transformation: We use a log function to transform our features so that they approximate a normal distribution. 

Two reasons guided this decision. First, many features exhibited log-normal distributions with long right tails due to outliers. We 

transformed our features in order to reduce the influence of outliers in model training. Secondly, since linear regression is among 

the candidates in our model selection, having normal distribution in features also allows for the relationship between feature set 

variables and truth set income to be approximately linear. To account for zero and negative values in the feature columns, we use 

the function log(X + 1 – min(X)) to transform any given feature X.

• Treating missing values: Rather than assume that data were missing at random, we allowed for the possibility that patterns in 

the incidence of missing observations might contain useful predictive information. We created a missing-indicator binary variable 

for each feature, which takes the value of 1 for customers who did not have recorded information for that feature. These variables 

retain a record of missing information for use as separate candidate features. We then imputed each feature’s missing entries with 

the average of its non-missing values.

• Standardizing features: In our final step, we standardized each numeric feature by subtracting its mean and dividing by its standard 

deviation. This is to ensure consistent units across features, which allows models that use gradient descent algorithm (e.g., linear 

regression with regularization, Support Vector Machine) to converge faster.6 

• Interaction terms: We created interaction terms between age and the following numeric features: credit limit, checking account 

inflows, and revolving credit card balances. The interactions proved to be highly predictive of our ground truth income. 

Pre-processing categorical features: For each categorical feature, 

we converted missing values into a distinct category. We then use 

one-hot encoding to convert each categorical feature into columns of 

binary variables. While this works for most features, we encountered a 

challenge with the treatment of ZIP code. Due to the number of distinct 

ZIP codes in our data set, converting each distinct value into a separate 

binary variable would expand our total feature count by upwards of 

30,000 columns. To circumvent this, we converted each ZIP code into 

two numeric fields: the longitude and latitude of its centroid. 

The processing described above expanded the total candidate 

feature set to 780 features due to the addition of missing value flags 

and interaction terms. The number of features raises concerns of 

multicollinearity, which we explored by removing features that were 

highly correlated with others from the feature set. As this step did not 

impact model performance as measured by MAE, we did not include it 

in our final pre-training data processing.7

Figure 5 – Procedures for processing the feature set prior 
to training the estimate



JPMorgan Chase Institute
Estimating Family Income from Administrative Banking Data: A Machine Learning Approach

8

Income Estimation Benchmarks 

To better understand the incremental value of a machine learning 

approach, we constructed two naïve approximations of income 

for benchmarking purposes: the Inflow Benchmark and the IRS 

Benchmark, described below. These benchmarks grounded our 

ability to estimate gross family income without the use of predictive 

modeling. They also helped ascertain the value and predictive power 

of administrative banking data in estimating gross family income.

The Inflow Benchmark used inflows into customers’ checking accounts 

that we categorized as income to proxy take-home income. We 

then adjusted this inflow-based measure of take-home income to 

approximate post-tax income by dividing by one minus the federal 

tax rate of each income bracket to approximate gross family income.8 

The IRS Benchmark used ZIP code level average IRS-reported income 

to proxy income for each individual based on their reported ZIP code. 

This benchmark approximates ability to predict income using only 

publicly available data.

The relationship between the benchmark measures and our truth set 

is presented in Figure 6. Unsurprisingly, both benchmarks yielded high 

mean absolute errors. MAE values were 162 percent for the Inflow 

Benchmark and 103 percent for the IRS Benchmark.9 Put differently, if we 

only used checking account inflows or publically available incomes at the 

ZIP code level, we would misestimate gross family income on average by 

over 100 percent. In coming sections, we will see that information from 

high-frequency deposit accounts can be powerful for predicting income 

in conjunction with other features in a machine learning approach, 

yielding a significantly lower MAE than either benchmark. Additionally, 

the Inflow Benchmark demonstrates that checking account inflows alone 

are not sufficient for predicting gross family income. 

We used these MAE values for comparison purposes as we developed 

our machine learning approach to income estimation. Any machine-

learning-based income estimates should have considerably lower MAE 

than these benchmarks to justify the added complexity of the approach. 

The remainder of this paper discusses our approach and results in detail.

Machine Learning Algorithms

We trained models using a variety of algorithms 

and hyperparameter settings to find the 

best option for our purposes. We considered 

the following methods: linear regression, 

gradient boosting machines, random forests, 

and support vector regressors. Box 2 briefly 

outlines each method, including strengths 

and potential weaknesses. Methodological 

References lists in-depth sources. We 

discuss model training details and results in 

subsequent sections.

Box 2: Overview of the modeling 
algorithms considered for training 
JPMC IIE version 1.0

Linear regression is a parametric statistical modeling 

technique with a long history of successful use in analyzing 

financial behaviors. Regression algorithms produce 

interpretable modeled relationships, while suffering 

from rigid assumptions around functional forms of those 

relationships, as well as risk of overfit. The former requires 

substantial data pre-processing to address; we mitigate the 

latter via an elastic net algorithm to penalize overfit and 

remove unnecessary features. 

Gradient boosting machines (GBM) and random forests are 

machine learning algorithms based on ensembles of decision 

trees. The GBM algorithm generates a sequential series of weak 

learners (shallow trees), iteratively improving the estimate 

with each new tree. The random forest algorithm trains many 

deep decision trees, averaging the individual predictions for 

the final estimate. These nonparametric methods are capable 

of fitting relationships with no requirements around the 

underlying functional forms. However, the final modeled 

relationships are less interpretable than with regression, 

and can also be prone to overfit. 

Support vector regressors are machine learning models 

constructed by partitioning the training data feature space 

into maximally-separate regions by a set of hyperplanes. The 

algorithm has flexibility to partition with linear or non-linear 

hyperplanes, but is prone to the same disadvantages of GBM 

and random forests—lack of interpretability and overfit.

Figure 6 - Benchmark income measures
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Model Training
Data usage: Model training and optimization used a sample of 250,000 customers stratified on income quintile, as described in the Truth Set 

and Additional Filtering section. In order to train a model that is generalizable to different populations of our research universe, we separated 

the data into three groups:

1. Training Set (60 percent of sample): Used to fit the models in order to determine the form of the relationship between income 

and the feature set

2. Validation Set (20 percent of sample): Used in parallel with the training set, to tune hyperparameters and guard against overfitting

3. Testing Set (20 percent of sample): Used to assess the predictive power of the final model, on observations not used for training 

or hyperparameter tuning

As described in the Data Sources section, the feature set and truth set were constructed on a yearly basis from 2013 to 2017. As such, we 

constructed separate training, validation, and testing datasets for each of these years and trained the models accordingly. We took this yearly 

approach to mitigate the performance degradation we observed on out-of-year predictions. In preliminary analysis, model error increased 

when scoring the model on samples outside of the model’s training timeframe (Figure 7). Since this estimate will be used to predict income on 

customers for whom we have no income data, rather than to predict future income, having a consistent out-of-year prediction was less necessary 

than in other machine learning exercises. Thus, we were comfortable with the yearly training approach.

Figure 7 - MAE degradation on out-of-year data

For models developed on one year and then scored on another

Data

Model
2014 2015 2016

2014 37% 39% 40%

2015 36% 54%

2016 54%

 Source: JPMorgan Chase Institute

Figure 8 – Overfit candidate model, trained and assessed on 2017 data

Model selection to prevent overfitting: Overfitting occurs when a 

model performs extremely well during training and optimization 

but very poorly out of the training sample. One of the models we 

trained—a GBM with learning rate of 0.05 and maximum depth of 

20—exemplifies this. The model performed very well on the training 

data (MAE of 3 percent) but was unable to generalize well beyond it 

(testing set MAE of 36 percent). 
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This highlights the importance of our data approach, and the necessity of assessing models beyond their training data. As model specification 

becomes more complex, model error will decrease on the training set, fitting ever more closely to the specific observations in the training 

data. In contrast, the error on the validation set will begin to increase when the model is over-specified to the training data, indicating that 

the model is no longer generalizable outside of the training set. Overfitting is always a risk because the model is tuned to minimize the error 

for the training set; assessing performance on a validation set is necessary to guard against that risk. 

Throughout the model training process, performance (MAE) on the validation set guided our decisions regarding hyperparameter settings 

and model selection.

Hyperparameter tuning approach: For each year, model training iterated over 105 different models built from four different estimators: gradient 

boosting machines, random forests, elastic net linear regression, and support vector regressors. Each of these models required hyperparameter 

tuning in order to determine the best specification. 

Hyperparameter tuning is useful to prevent over-fitting through regularization. In simple terms, regularization is tuning or selecting the 

preferred level of model complexity to ensure model generalizability. Without this step, models may be too complex and overfit or too simple 

and underfit, giving poor predictions in either case.10

Specifically, we focused on the following hyperparameters11 to prevent overfitting:

Linear regression

• Lasso & ridge regularization12: The most common types of regularization. These update the general cost function by adding 

another term known as the regularization term. 

• Cost function = Loss (say, binary cross entropy) + Regularization term Reducing feature set

Gradient Boosting and Random Forest

• Number of estimators: Adding more trees to the model can help improve performance, and high-performing GBMs often have 

hundreds of trees. Though at some point in the training process, adding more trees leads us to overestimate model complexity 

and thus overfit to the training data.

• Maximum depth: Deeper trees are more complex and shallower trees are preferred. Generally, better results are seen with 

5-10 levels.

Support Vector Regressors

• Kernel type: The kernel introduces a similarity function that allows dropping assumptions of linearity. We considered two 

kernel options: linear and radial basis function (RBF).

• Margin: The margin alters the decision boundary to consider data by adding a penalty to the error term. We considered values 

ranging from 0.0001 to 1.

In this estimation we used a mixed search approach, combining grid search and random search techniques.13 This enabled a more informed 

selection of parameters that didn’t require the grid search approach of assessing all possible combinations, which can add substantial 

computational and timing costs for the project. Without the full grid search, we risk missing the optimal hyperparameter settings, as the 

mixed approach does not assess every combination of options. We accepted this trade-off, and decreased the risk by exploring several 

iterations of search, with multiple hyperparameter settings per iteration. 

For each hyperparameter, the mixed grid search approach selects a few values from a wide range of possible values and then observes the 

results on both the training and the validation sets. In a second iteration, we increase the range around those hyperparameter values that 

show the most promise in model performance, as measured by MAE on the validation set. For instance, in gradient boosting, the first tuning 

iteration for maximum depth assessed three possible values: 5, 10, and 25. We observed that a maximum depth of 5 minimized the validation 

set MAE, and so focused the second iteration on a nearby range, assessing values of 2, 5, 6, and 7.

The choice of a mixed approach enabled the hyperparameter tuning and model performance benefits of grid search without exceeding timing 

and computational constraints.
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Results
Final Model

The purpose of JPMC IIE is to provide an estimate of gross family income that we can use to segment and reweight populations by income quintile. 

Thus, in optimizing the performance of JPMC IIE, we aimed to minimize the mean absolute error (MAE) of the point estimates and also to predict 

the correct income quintile accurately, both overall and within each income quintile. Here we present the results of version 1.0 of JPMC IIE.

For each year of data, our mixed grid search iterated through many versions of each of our four candidate methods: gradient boosting 

machines, random forests, elastic net linear regression, and support vector regressors. For our particular data and performance criteria, the 

best-performing model from each year was a gradient boosting machine (GBM). Given our focus on performance optimization, rather than 

the functional relationship between truth set income and each feature input, we were not surprised to see the tree-based ensemble methods 

(GBM, random forest) outperform linear regression. The specified hyperparameters of the selected GBM models are shown in Figure 9. 

Figure 10 shows results for MAE and quintile prediction accuracy 

across years. Quintile prediction accuracy refers to the proportion 

of each predicted income quintile classified correctly (e.g., 

belonging to the same truth set income quintile), based on ACS 

quintile boundaries. By all metrics, results are fairly consistent 

across years, yielding on average across years an MAE of 41 

percent and an accurate quintile prediction 55 percent of the 

time. We also observe small differences between the MAE on the 

training and testing sets. This means that the models are robust 

to different underlying distributions and are not overfitting to 

the training sample.

Inputs to the Final Model

Across each modeled year, the features show some patterns in 

importance. For instance, credit card limit and total liquid assets 

across Chase deposit accounts are consistently two of the most 

predictive fields, along with socio-demographic variables such as 

age and longitude of ZIP code centroid. Of the remaining model 

features, the vast majority of predictive fields are related to 

checking account inflow amount and average, as well as checking 

account and credit card balances.

Characteristics of the Final Model

Using the 2017 model, we will outline key characteristics of model 

performance. Results are shown only for 2017, but patterns and conclusions 

hold across each year’s model.

As most of JPMCI’s research uses income on the ACS quintile basis, we 

prioritized consistent accuracy across those quintiles. Figure 11 shows 

classification across truth set income quintiles, within each predicted income 

quintile. We observe that the accuracy rate is consistent across predicted 

quintiles, as desired. In addition, misclassifications tend to be concentrated 

in the adjacent quintiles. For instance, 0.8 percent of the individuals in the 

predicted first quintile actually belong to the fifth quintile, and 32 percent 

(the majority of mispredictions) actually belong to the second quintile. 

Across all income quintiles, roughly 90 percent or more of the observations 

were classified in the correct or an adjacent income quintile. 

Figure 9 - Hyperparameter values for version 1.0 of JPMC IIE

HYPERPARAMETER VALUES

Learning Rate .05 for all years

Loss Function Least Square for all years

Max Depth 5 for 2013, 2016 & 2017, 6 for 2014 & 2015

Min. Samples Split 10 for 2013, 2014 and 5 for 2015, 2016, 2017

Number of Estimators 500 for all years

Figure 10 - Performance metrics for version 1.0 of JPMC IIE

YEAR OF 
TRAINING

TRAINING SET 
MAE

TESTING SET 
MAE

QUINTILE PREDICTION 
ACCURACY

2013 38% 40% 55%

2014 39% 41% 54%

2015 39% 40% 54%

2016 38% 42% 53%

2017 37% 41% 54%

 Figure 11 - ACS quintile accuracy by predicted quintiles

Consistent across predicted income quintiles, correct  
classification rate into corresponding truth set quintile  

is 53%-57% (shown for 2017 version 1.0 of JPMC IIE)

Q1 TRUE Q2 TRUE Q3 TRUE Q4 TRUE Q5 TRUE

Q1 Predicted 56.8% 32.1% 7.8% 2.5% 0.8%

Q2 Predicted 9.3% 55.3% 29.3% 5.6% 0.5%

Q3 Predicted 1.1% 17.2% 53.3% 26.0% 2.4%

Q4 Predicted 0.3% 4.0% 24.4% 56.4% 14.9%

Q5 Predicted 0.1% 1.0% 7.8% 35.4% 55.8%

Source: JPMorgan Chase Institute
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The consistent accuracy across quintiles is the result of stratifying our training sample by ACS income quintile (described in the Truth 

Set and Additional Filtering section). In contrast, a model trained on a random, un-stratified sample underperforms for lower income 

quintiles while performing better for middle and high income quintiles (Figure 12). This is because our un-stratified training set naturally 

over-represents families in the third and fourth income quintiles.

Although accuracy rates within a predicted quintile are consistent across quintiles, the model exhibits asymmetric errors when assessed at 

a more granular level. Figure 13 shows that low predicted income values are skewed slightly toward underpredicting their corresponding 

truth set income.

Figure 12 - ACS quintile accuracy by stratification options

Comparison of final version 1.0 of JPMC IIE vs. test version trained on the un-stratified sample

QUINTILE ACCURACY FINAL MODEL UN-STRAT. MODEL DIFFERENCE

Q1 Predict 56.8% 28.5% -28.3%

Q2 Predict 55.3% 49.0% -6.3%

Q3 Predict 53.3% 73.2% 19.9%

Q4 Predict 56.4% 67.5% 11.1%

Q5 Predict 55.8% 59.8% 4.0%

Source: JPMorgan Chase Institute

Figure 13 – Estimated income vs. truth set income, and corresponding residuals

With broader scope of analysis, we would ideally perform residual analysis to gain a deeper understanding of the above patterns. We note 

this as an area for future model exploration (see Discussion section for additional commentary).
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Cross-Model Comparisons and Trade-offs

The MAE on the training and testing sets is presented in Figure 14 for all candidate models attempted during the mixed grid search process. 

MAE values for our two benchmark estimates are included as well, showing that the models perform better than the benchmarks. In 

addition, broadly, we observe two categories:

• Models that had low difference between training and testing MAE, but high error rates. These models have relatively low predictive 

power, including the attempted logistic regression runs and some of the GBM runs.

• Models with low training MAE but significantly higher testing MAE, indicating overfit. Several GBM and random forest runs exhibit this 

behavior.

Figure 14 - Testing set MAE vs. Training set MAE Figure 15 – Model training bias-variance trade-offs

The previous two characteristics are referred to as bias and variance, where bias is the predictive power of the model, and variance is the 

generalizability to different underlying distributions. The trade-off between these two characteristics is one of the most studied problems 

in machine learning.

In our analysis, we found that hyperparameter tuning results in modeling outcomes that form a frontier in which there is a clear trade-

off between bias and variance. Additional updates to hyperparameters can move results along this frontier, trading off between the two 

without the ability to improve both simultaneously. (See the frontier formed by the Baseline points in Figure 15.) In order to improve both 

—to move the bias-variance frontier inward—thorough data exploration and treatment is critical. For example, completion of the data pre-

processing steps discussed in the Feature Set section shifted the frontier inwards, allowing us to reduce both the bias and variance of our 

candidate models.
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Case Study: 
Incorporation of Final 
Model into Institute 
Research
In a recent Institute publication, On the Rise: Out-of-

pocket Healthcare Spending in 2017, we tested JPMC IIE 

performance in reweighting the sample population for 

the JPMorgan Chase Institute Healthcare Out-of-pocket 

Spending Panel (HOSP). 

Figure 16 compares out-of-pocket health spending 

levels when we use version 1.0 of JMPC IIE income 

as an input to reweight the HOSP sample to match 

each state’s joint age and income distribution. For the 

sample of families for whom we have truth set income, 

the average out-of-pocket health spending levels were 

similar when we weighted the sample using JPMC IIE 

and age (blue line) compared to when we weighted the 

sample using age and truth set income (black line)—

the “gold standard” for comparison. Applying JPMC IIE 

and age yielded estimated spend levels much closer to 

this gold standard than either an unweighted sample 

or weighting the sample exclusively by age, another 

variable that is arguably less prone to measurement 

error. We concluded that use of version 1.0 of JPMC 

IIE is valuable in weighting the HOSP sample to more 

closely represent each state by age and income.

Figure 16 - Out-of-pocket health spending across years, by different weighting schemes

Box 3: Background on the Healthcare Out-of-
pocket Spending Panel (HOSP) data and analysis

Leveraging financial transaction data, the JPMorgan Chase Institute 

provides a unique cash flow view of families’ healthcare out-of-pocket 

spending and financial burden. In 2017 we released the first 

estimates of out-of-pocket healthcare spending levels and burden at 

the state and county level from 2013 to 2016, from our JPMorgan 

Chase Institute Healthcare Out-of-pocket Spending Panel (JPMCI 

HOSP) data asset. In On the Rise: Out-of-Pocket Healthcare Spending 

in 2017, we describe enhancements to, and key findings from, the 

JPMCI HOSP data asset that includes the first available estimates of 

2017 healthcare out-of-pocket spending trends, as well as a first-ever 

look at year-over-year trends at the state and county level and for 

different demographic groups. 

The HOSP sample draws on families who reside within the 23 states 

with a Chase branch footprint. In order to make each state sample 

more representative of the general population within that state, we 

reweight each state’s sample to match the joint age and gross income 

distribution within that state according to the American Community 

Survey (ACS) for each year from 2014 through 2017. Our unit of analysis 

is the primary account holder, whom we refer to as a family. When 

reweighting our sample, we match the joint age and income distribution 

of our primary account holders to the heads of family in the ACS. Our 

weighting approach leverages the JPMorgan Chase Institute Income 

Estimate (JPMC IIE), which is an estimate of gross family income 

developed using machine learning techniques to generate an income 

estimate based on checking account and credit card attributes. 

https://www.jpmorganchase.com/corporate/institute/report-on-the-rise.htm
https://www.jpmorganchase.com/corporate/institute/report-on-the-rise.htm
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Discussion
JPMC IIE represents the JPMorgan Chase Institute’s first attempt to leverage administrative banking data and machine learning approaches 

to estimate gross family income. In doing so we gleaned several important insights regarding both methodology and the value of 

administrative data. 

1. Administrative banking data offer powerful insights in enhancing income estimates, but alone are insufficient to predict income. 

High-frequency deposit account information, in combination with other data features and a machine learning approach, yielded a 

significantly more accurate prediction of income than public estimates of income based on ZIP code (the IRS benchmark), reducing the 

mean absolute error by two thirds, from 103 percent to 41 percent. 

That said, deposit account inflows alone are insufficient to develop an accurate estimate of gross family income: the Inflow Benchmark 

had a higher error rate than even the IRS benchmark (an MAE of 162 percent compared to 103 percent). There could be several reasons 

why deposit account inflows alone are insufficient to approximate gross family income. First, to the extent that families spread their 

income sources across multiple financial institutions, any single account or set of accounts with a single institution may provide an 

incomplete picture of total income. Second, with respect to inflows, it can be difficult to discern the economic purpose of all inflows and 

specifically distinguish between incoming transfers and true income. Finally, inflows represent take-home income, after taxes and payroll 

deductions for retirement and other savings and charitable giving that can be facilitated by the employer. Appropriately accounting for all 

of those deductions can be difficult when attempting to scale take-home income up to an estimate of gross family income. 

2. Individual-level income information creates opportunities to study more granular income patterns, forming a valuable supplement 

to other available data. Large scale, publicly-available income data is aggregated, often at the ZIP code or Census tract level. While this 

provides valuable information for analysis, it obscures information at the tails of the distribution, which is of interest to researchers. 

Another key source of information for analyzing consumer financial patterns, credit bureau data are available at the individual level. 

However, credit bureau information focuses on the debt side of consumers’ finances. This creates a gap, with no clear sources of 

individual level information on the asset side of consumers’ finances or their income statement. JPMC IIE shows promise as a means of 

filling this gap.

3. Ascertaining and improving the veracity and representativeness of the truth set is critical when leveraging administrative data 

for prediction tasks. On the veracity side, we cleaned the truth set to remove customers whose ground truth income was less than 

income inflows into their checking account. We saw that this shifted the bias-variance frontier inward, allowing us to reduce the bias 

and variance of our estimate simultaneously. For representativeness, our large sample sizes afforded us the opportunity to stratify our 

truth set to obtain more accurate predictions in underweighted parts of the income distribution. Stratifying the truth set yielded a 28 

percentage point improvement in the quintile prediction for families in the lowest income quintile. In order to study the distributional 

impacts of economic trends and public policies, it is critical to measure income equally well across the income distribution. 

Even still, there is room for improvement in balancing estimation bias across the income distribution. Version 1.0 of JPMC IIE tends to skew 

low predicted income values toward underpredicting their corresponding truth set income. Below we describe a few ideas to continue to 

tackle this thorny estimation challenge and ensure accuracy across the JPMC IIE spectrum.

LImitations and Future Direction

With a validated, working version 1.0 of JPMC IIE in place, upcoming efforts will focus on enhancement and expansion of scope. Due to the 

proof-of-concept nature of version 1.0, we prioritized performance and use-case assessments to confirm viability of an income model for 

use in research. As such, certain avenues of exploration were put on hold for future iterations. Broadly, planned future enhancements fall 

into three categories: data expansion, feature refinement, and insight exploration.

Data expansion: As discussed in detail, version 1.0 of JPMC IIE relies on the de-identified Chase checking account universe as its base 

population. This means that the model cannot be applied to credit-only customers who do not have a Chase checking account, limiting the 

research projects where it can be of use. For version 2.0, we will obtain credit bureau data for a sample of de-identified Chase customers, 

regardless of their presence in the checking account universe. This will accomplish two critical goals: (1) expand the population of customers 

for whom we can predict income by including credit-only Chase customers, and (2) enhance the predictive power of the model for the 

existing checking account population by adding new features to our modeling data.
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We will also consider the addition of new features from both administrative account level data and other sources, such as expanding the 

set of features pulled from publicly-available sources. Potential sources include Zillow, Census and County Business Patterns, and IRS. In 

contrast to the bureau data, these features are at the aggregate instead of individual level (e.g., Census tract or ZIP code level). However, 

they represent different facets of a consumer’s overall profile, and may still be powerful in conjunction with individual level features.

Feature refinement: Despite the pre-processing steps discussed in the Methods section of this paper, we spent minimal time on feature 

engineering for version 1.0. As noted in the discussion on bias-variance trade-off, thorough data exploration and treatment is critical for 

establishing a well-performing model. 

Avenues for further exploration include creation of features based on additional geographic characteristics beyond longitude and latitude, 

trends over time (at both customer and geographical levels of aggregation), administrative data from additional deposit banking products, 

and account attributes. Thoughtful assessment of feature aggregation may also yield powerful predictors that the gradient boosting 

algorithm cannot easily approximate, such as ratios or other functions of multiple features. 

Insight exploration: For version 1.0, we have not yet performed in-depth exploration of the insights underlying the relationships between 

input features and gross family income. Future assessments will focus on deeper understanding of the relationships captured by the model, 

and how individual features impact income predictions. 

Beyond understanding feature relationships, we are also eager to explore the model holistically to gain perspective on areas of caution. 

We will explore two approaches: demographic monitoring and residual monitoring. These assessments will begin with version 1.0, prior to 

more granular use in research, and continue throughout development and validation of version 2.0.

• Demographic monitoring will assess whether modeled income reflects demographic biases. If, for example, predicted income is more 

skewed on the basis of age or gender than truth set income, this might indicate that the model is detecting and then exacerbating 

income biases present in the truth set. This is a known issue when machine learning algorithms are trained on biased data.14 

• Residual monitoring will assess the model for systematic weaknesses. Are there segments of the population on which the model 

performs poorly, relative to overall performance? We will compare across segments to understand differences in predictive accuracy, 

in hopes of identifying improvements to address lower-quintile accuracy of the estimate. This exercise will also shed valuable light 

on whether JPMC IIE performs particularly well (or poorly) within certain geographies or demographic groups, providing important 

caveats for use in sample reweighting.

We are looking forward to deeper exploration on all of these fronts as we expand to JPMC IIE version 2.0. We are confident that coming 

iterations of analysis will yield insights of value to the broader academic, policy, and data science communities and look forward to sharing 

more in future.
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Glossary

Administrative banking data Data derived from the operation of administrative banking systems, including information from application 
processes, account characteristics, and customer transactions.

Channel The delivery channel by which money flows in or out of an account. Outflow channels include debit card 
purchase, ACH—debit, check withdrawal and ATM cash withdrawal. Inflow channels include ACH—credit, ATM 
cash deposit, ATM check deposit, and teller deposit.

Checking account universe The full set of checking account data compiled by the JPMorgan Chase Institute, with monthly summaries 
and daily transaction data for JPMorgan Chase checking account primary account holders. We restrict this to 
customer-months that have at least five checking account outflows.

Credit card income Gross family income provided by JPMC credit card holders at application stage or subsequent updates to their 
credit card information.

Feature A measurable property or characteristic of the modeling unit. In our case, a feature represents measurable 
information about a primary account holder in our data universe, or her accounts. Examples include credit 
limit, number of deposits this month, etc.

Feature set The full set of features used for model training, observed and recorded for each customer in our modeling data.

Hyperparameter A parameter whose value is set before model training begins, to control key elements of the training process. 
For example, with a gradient boosting machine (GBM) the modeler specifies the number of estimators (trees) 
to train, and the maximum depth each tree may take; in linear regression with elastic net, the modeler 
specifies the loss function and alpha values.

Inflow A credit transaction to an account holder’s checking account. 

Mean absolute error (MAE) A measure of the difference between ground truth income and estimated income based on the absolute value 
of that difference for each customer in the modeling data. We chose to optimize on mean absolute error 
rather than mean squared error to avoid penalizing errors in a quadratic functional form, thus increasing the 
penalty for larger errors.

Mortgage verified income Gross family income provided by JPMC mortgage applicants, and verified during the application process.

One-hot encoding Process for transforming a categorical feature into a set of binary variables representing each level of the 
original feature.

Outflow Occurs when a model is fit closely to the specific observations in the training set and is no longer generalizable, 
performing very poorly on observations outside of that sample.

Overfit Resident Consumers: Consumers that live inside of the CBSA in question.

Primary account holder The signatory legally responsible for the account. In the JPMorgan Chase data asset, all account activity 
is reflected under the person listed as the primary account holder. When there is more than one primary 
account holder, the account activity is reflected under the person listed first on the account. 

Testing set Modeling data is separated into training, validation, and testing sets. The testing set is the portion of the 
modeling data used to assess the predictive power of the final model, on observations not used for training 
or hyperparameter tuning.

Training set Modeling data is separated into training, validation, and testing sets. The training set is the portion of the 
modeling data used to fit the models in order to determine the form of the relationship between truth set 
income and the feature set. Conventionally, the training set is the largest of the three, generally between 50 
and 70 percent of the full modeling data.

Transaction A single deposit or withdrawal of funds by any transaction channel.

Truth set The set of customer-level ground truth gross family income values used for model training and validation; 
synonymous with dependent variable or target variable.

Validation set Modeling data is separated into training, validation, and testing sets. The validation set is the portion of the 
modeling data used in parallel with the training set, to tune hyperparameters and guard against overfit.
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Endnotes
1 In future versions of IIE we plan to update this analysis to a 

rolling 12-month window, corresponding to the 12 months 
prior to customer providing truth set income. This will avoid 
inconsistencies in the feature set across customers who 
provided income at different points in the calendar year.

2 Using the American Community Survey for each year in 
our sample (2013 through 2017), we obtained quintile 
thresholds by calculating the 20th, 40th, 60th, and 80th 
percentiles of family income reported from the survey. 
These thresholds were then applied to our data to proxy 
national gross family income distribution, and are referred 
to throughout this paper as “ACS quintiles.” ACS income 
information from IPUMS-CPS, University of Minnesota, 
www.ipums.org

3 For example, see Wei and Goodman (2015).

4 Here income inflow represents inflow transactions into 
checking account that we categorized as income. It does 
not include transfers from other financial institutions or 
inflows that we could not categorize.

5 During model training, we assessed the impact of including 
the top and bottom percentiles of truth set income in the 
modeling data. Reintroducing that population to the model 
training resulted in an MAE of 43 percent on the testing 
set, an increase relative to the model trained without 
exposure to these extreme observations. For comparison, 
the testing set MAE of the final model is 37 percent.

6 See Ting et al (2017).

7 Generally, multicollinearity poses a problem in its creation 
of: unstable coefficient estimates in regression, or feature 
importances in tree-based methods that are difficult 
to interpret. As this modeling exercise is focused on 
performance rather than interpretability of individual feature 
relationships, we were comfortable removing this step once 
the lack of impact on performance was established.

8 To build this benchmark we aggregated the inflows 
categorized as income from customers in 2017 and then 
adjusted by the tax bracket to estimate gross earnings. We 
used the following tax brackets: 
 

2017 Federal Tax Bracket

TAX RATE TAXABLE INCOME

10% $0 - $18,650

15% $18,651 – $75,900

25% $75,901 – $153,100

28% $153,101 – $233,350

33% $233,351 – $416,700

35% $416,701 – $470,700

39.60% $470,701+

9 All mean absolute error (MAE) values reported in this 
paper were calculated on the basis of log-transformed 
income, for consistency with model training

10 See Cawley and Talbot (2010)
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11 The following hyperparameter ranges were used during our mixed grid search: 
 

Random Forest

PARAMETER DESCRIPTION FIRST ITERATION SECOND ITERATION

Number of Estimators Number of trees generated 50,100, 500 500, 1000

Maximum Depth Maximum number of levels in each tree 5, 10, 25 2, 5, 6, 7

Maximum Features Function to calculate the number of features to 
consider when looking for the best split sqrt, log2 sqrt, log2

Minimum Samples Split Minimum sample size required to add  
a further split in a tree

2, 10 2, 5, 10 

Gradient Boosting

PARAMETER DESCRIPTION FIRST ITERATION SECOND ITERATION

Number of Estimators Number of boosting stages to perform 50, 100, 500 500, 1000

Learning Rate A shrinkage factor that controls the weighting 
of new trees added to the model 0.05, .01, 0.5 .01, .05, .1 and .5 

Subsample Fraction of observations to be used for fitting 
the individual base learners 0.1, 0.5, 1.0 0.1, 0.5, 1.0

Maximum Depth Maximum number of levels in each tree 5, 10, 25 2, 5, 6, 7

Elastic Net Linear Regression

PARAMETER DESCRIPTION FIRST ITERATION SECOND ITERATION

Alpha
Constant that multiplies the penalty terms; 

alpha = 0 is equivalent to OLS 0.5, 1.0, 1.5 0.5, 1.0, 1.5

L1 Ratio Elastic Net mixing parameter; 0 for L2  
penalty and 1 for L1 penalty 0.25, 0.5, 0.75 0.25, 0.5, 0.75

Intercept Whether the intercept should be  
estimated or not True, False True, False
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12 Ridge regression adds a squared transformation of the coefficients in the model as penalty term to the loss function. Lasso 
regression adds the absolute value of coefficient as penalty term to the loss function. The key difference between these 
techniques is that Lasso shrinks the less important feature’s coefficient to zero thus, removing some features altogether. This 
is particularly helpful for feature selection when we have a large number of features or are worried about multicollinearity.

13 Hyperparameter optimization is a common problem in machine learning. Machine learning algorithms, from logistic 
regression to neural networks, depend on well-tuned hyperparameters to reach maximum effectiveness. Different 
hyperparameter optimization strategies have varied performance and cost. For this project, two methods were considered: 

Grid Search suggests parameter configurations deterministically, by laying down a grid of all possible configurations inside 
your parameter space. To optimize, one evaluates the function at every point on this grid. One caveat is that the number of 
function evaluations required for this strategy increases exponentially with each additional parameter.

Random Search suggests configurations randomly from your parameter space. To optimize, one evaluates the function at 
some number of random configurations in the parameter space. One caveat is that it may be unclear how to determine the 
number of function evaluations required for your particular problem.

14 See O’Neil (2018) for a discussion of the consequences of training an algorithm on a potentially biased truth set.
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